Psychopharmacology of Aggression Management in Children and Adults

David N.A. Reynaud, PharmD
PGY1 Pharmacy Practice in Mental Health Resident
Miami VA Healthcare System

Objectives

- Differentiate between classifications of aggressive behavior
- Discuss the neurobiology of aggressive behavior
- Compare the various pharmacologic treatment options for aggression
- Design a medication regimen to treat aggression in the patient case provided

Classifying Aggression

- Based on the mode
 - Physical
 - Verbal
- Based on the target
 - Objects (e.g., destroying property)
 - Persons (e.g., screaming, fighting, assault)
 - Self (e.g., head-banging, punching walls)
- Based on the intensity
 - Calm, threatening, assertiveness
 - Raw, primitive, un-modulated

Muscari, ME. Pharmacotherapy of Violent or Aggressive Behavior. October 2006.
Classifying Aggression

- Based on the Time-Frame
 - Acute vs Chronic
- Overt vs Covert
 - Assault vs Manipulation
- Adaptive vs Maladaptive
 - Punching a burglar vs a supervisor
- Patient Age
 - Pediatric (<18 years) vs Adult (18+ years)

Classifying Aggression: Impulsive vs Premeditated

- Premeditated
 - Proactive, goal-directed, predatory
 - Unprovoked by immediate threat, frustration
- Impulsive
 - Unplanned
 - Perception of immediate threat or frustration
 - Negative emotions (fear, anger)
 - Characterized by high autonomic arousal
 - Healthy as a reaction to environmental threats
 - Pathological if disproportional intensity/misdirected

Classifications of Aggression: DSM-V

- Oppositional Defiant Disorder (ODD)
 - Angry/irritable mood, argumentative/defiant behavior, vindictiveness
- Conduct Disorder (CD)
 - ODD + aggression to people or animals, destruction of property, deceitfulness or theft, and serious violation of rules; age <18 years
- Antisocial Personality Disorder (APD)
 - CD when patient is 18+ years
Classifications of Aggression: DSM-V

- **Intermittent Explosive Disorder (IED)**
 - Recurrent, impulsive, aggressive outbursts disproportionate to provocation; age >6 years

Aggression: Related DSM-V Diagnoses

- **Attention-Deficit / Hyperactivity Disorder (ADHD)**
 - A persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with functioning or development, not better explained by another mental disorder

- **Borderline Personality Disorder (BPD)**
 - A pervasive pattern of instability of interpersonal relationships, self-image, and affects, and marked impulsivity, beginning by early adulthood

“Why Is My Patient So Aggressive?”

Causes include:
- Uncontrolled psychiatric disorders
- Neurological or medical disease
- Drug use / abuse
- PTSD
- Intermittent impulsive

http://i.livescience.com/images/i/000/004/598/i02/070606_generic_anger_02.jpg?1296082940
https://slightlychristopher.files.wordpress.com/2013/01/0.jpg
Neurobiology of Aggression

- Imbalance between:
 - Orbital Frontal Cortex (OFC) -> top-down control
 - Anterior Cingulated Cortex (ACC) -> behavioral adaptation
 - Amygdala / Insula -> fear, threat, punishment, reward

- Lower threshold for aggressive responses to external stimuli

- Inadequate regard for consequences of behavior

Receptor Targets of Aggression

- Serotonin (5HT) Transporter
 - activity in ACC and OFC of aggressive patients

- 5HT₂A Receptors
 - binding in physically aggressive, BPD, suicide

- Glutamate / GABA Imbalance
 - Hyperactive response to aversive stimuli

- β-adrenergic / AMPA
 - Modulates emotional memory in the amygdala

- HGH response to α₂-agonist
 - Irritability

Receptor Targets of Aggression

- Testosterone
 - ↑ reported in criminals with personality disorders, alcoholic violent offenders, and spousal abusers
 - Conflicting study in IED males -> no significant association with aggressive behavior

Management: Co-Morbid Conditions

Provide effective treatment of the underlying, co-occurring neurological, medical, or psychiatric condition first

Examples:
- Depression → Antidepressants
- Anxiety → Anxiolytics
- ADHD → Stimulants, α₂-Agonists
- Bipolar Mania → Mood Stabilizers
- Psychosis → Antipsychotic

Managing Aggression as the Primary Condition

Specific pharmacotherapy targeting acute aggressive behavior independent of comorbid diagnosis

- Sedatives
- Anti-Psychotics
- Mood Stabilizers / Anti-Convulsants
- Beta-blockers
- 5-HT1A Receptor Agonists
- Omega-3 Fatty Acids
- Anti-androgens

Comparison by Effect-Size

- Effect Size (ES)
 A quantitative measure of the strength of a phenomenon, based on the primary outcome variable for each study in a meta-analysis
 \[\text{ES} = \frac{\text{Experimental} - \text{Control}}{\text{SD}_{\text{pooled}}} \]

- Small Effect: <0.2
- Medium Effect: 0.21 – 0.5
- Large Effect: >0.8

*ES ≥0.4 ~ observable change in patient condition
Antidepressants: Adults

- Studied Drug:
- Control Group:
- Diagnosis

Specific Drugs Studied:
Fluoxetine, fluvoxamine, sertraline, amitriptyline, imipramine, citalopram

Proposed Mechanism:
↑ 5-HT activity in OFC / ACC → ↑ regulation of aggressive responses to aversive stimuli

Effect Size for Drug-Class:
Weak evidence for efficacy

Antidepressants: Adults

Desipramine (Norpramin®)

- Clinical Effect:
 ↘ of aggression associated with depression

- Mechanism:
 Inhibition of NE > 5-HT reuptake transporters → ↑ synaptic NE/5-HT concentrations → ↓ of inhibitory α2 autoreceptors / post-synaptic β-receptors

- Adverse Effects:
 - Drowsiness, dizziness, headache, hypotension, xerostomia, blurred vision
 - Cardiac dysrhythmia, QTc-prolongation, sudden cardiac death, NMS, CVA, seizure

- Dose Adjustments:
 Lower initial doses if geriatric, or hepatic impairment
Antidepressants: Bupropion (Wellbutrin®)

- Clinical Effects: ↓ of aggression associated with depression
- Mechanism: Inhibition of DA, NE reuptake transporters → ↑ synaptic DA/NE concentrations in the Nucleus Accumbens / PFC
- Adverse Effects: Insomnia, headache, dizziness, cardiac dysrhythmia, xerostomia, nausea
- Dose Adjustments: Hepatic impairment, moderate-severe → max dose 75mg/day (IR), 100mg/day (SR)

Antidepressants: Fluoxetine (Prozac®)

- Clinical Effects: ↓ of aggression associated with depression
- Mechanism: Inhibition of 5-HT reuptake transporters → ↑ pre-synaptic 5-HT → ↓ of 5-HT autoreceptors → ↑ 5-HT neuron firing
- Adverse Effects: Insomnia, sexual dysfunction, nausea, vomiting, restlessness, anxiety
- Dose Adjustments: Hepatic impairment, moderate-severe → max dose 75mg/day (IR), 100mg/day (SR)

Trials: Antidepressants for Aggression

- Biederman et al, 1989: Desipramine vs Placebo
 - RCT, n= 62, average age 10.4 years, 6-weeks
 - Dx: ADHD, 69% nonresponse to stimulants
 - Effect Size: 0.85 (high >0.51)
- Coccaro et al, 1997: Fluoxetine vs Placebo
 - DB, RCT, n= 40, ages 6-14 years
 - Dx: H ≠ MDD, ≠ Bipolar, ≠ Schizophrenia
 - Conduct scale response 21/37 vs 6/29, p <.01
- ____ et al, Year: Clonidine
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)
Norepinephrine Reuptake Inhibitor: Atomoxetine (Strattera®)

- **AEs:**
 - appetite, emotional lability

- **Studied Population(s):**
 - Primary Dx: ADHD, intolerance, failed response to stimulants
 - Comorbid Dxs: ODD, MDD, GAD
 - 887 subjects, Avg n=214.3; 80.5% male; 10.5 years old

- **Efficacy / Literature:**
 - 4 RCTs, ES=0.18, small-modest effect for long average study duration, sample size

Trials on ***-3 FAs:

- **et al, Year: Trial Intervention**
 - Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- **et al, Year: Drug A vs Drug B**
 - RCT, n= 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- **et al, Year: Clonidine**
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

Mood Stabilizers

- **Specific Drugs Studied:**
 - Lithium, valproate, topiramate

- **Mechanism:**
 - L: serotonergic function, noradrenergic function

- **Onset:**
 - Days to weeks

- **Studied Population:**
 - L: Abusive parents, prisoners, suicidal pts

- **Efficacy / Literature:**
 - L: Multiple RCTs demonstrating obsessive/compulsive behavior
 - L: Risk of death by suicide 2.7x less than valproate
Trials on ***-3 FAs:

et al, Year: Trial Intervention
- Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
- Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
- Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

et al, Year: Drug A vs Drug B
- RCT, n= 67, ages 6-14 years
- Dx: ADHD + ODD, ADHD + CD
- Conduct scale response 21/37 vs 6/29, p <.01

et al, Year: Clonidine
- RCT, n= 8, average age 10.0
- Dx: Autism (PDD)
- Effect Size: 1.1 (large >0.8)

Anticonvulsants

- **Specific Drugs Studied:**
 - Carbamazepine (Tegretol®), oxcarbazepine (Trileptal®)
- **Mechanism:**
 - DA activity w/o blocking specific DA receptors
- **AEs:**
 - Hepatotoxicity, pancytopenia, rash, hypersensitivity reactions, electrolyte disturbances, dizziness
- **Studied Population:**
 - C: Alzheimer's, vascular/mixed dementia, borderline
- **Efficacy / Literature:**
 - C: Sole RCT (n=22) → No benefit; Case studies describe benefit; widespread use, more study indicated

Anticonvulsants

- **Drug:** Oxcarbazepine (Trileptal®)
- **Mechanism:**
 - DA activity w/o blocking specific DA receptors
- **AEs:**
 - Hepatotoxicity, pancytopenia, hypersensitivity reactions, metabolic disturbances
- **Studied Population:**
 - C: Alzheimer’s, vascular/mixed dementia, borderline
 - O: Impulsive aggression w/o comorbid psychiatric dx
- **Efficacy / Literature:**
 - C: Sole RCT (n=22) No benefit; Case studies describe benefit

Benzodiazepines

- **Specific Drugs Studied:**
 - Lorazepam
- **Mechanism:**
 - GABA agonism
- **Onset:**
 - IM formulation: within minutes, peak at 3 hours
- **Studied Population:**
 - Widely used for acute aggression/agitation
- **Efficacy / Literature:**

Trials on ***-3 FAs :

- et al, Year: Trial Intervention
 - Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
 - Dx: ADHD(42), +Tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n = 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n = 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)
Antipsychotics: Risperidone (Risperdal®)

- **Mechanism:**
 - D2, SHT-2A antagonism

- **AEs:**
 - EPS, hyperprolactinemia, weight-gain, sedation, cardiac arrhythmias

- **Studied Populations:**
 - Pediatrics:
 - CD, ODD, ADHD, low IQ
 - Adults:
 - Schizophrenia, PTSD, Borderline

- **Efficacy / Literature:**
 - Peds: Multiples demonstrating efficacy, tolerability, ES: 0.9
 - Adults: Clozapine > Olanzapine > Quetiapine >> risperidone = haloperidol

Trials on *-3 FAs:**

- et al, Year: Trial Intervention
 - Meta-analysis of 11 RCTs, n = 150, age 10.6±2.4 years
 - Dx: ADHD(42), tic(67), CD(26), PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n = 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n = 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

Antipsychotics

- **Specific Drugs Studied:**
 - Clozapine

- **Mechanism:**
 - SHT-2A antagonism

- **Onset:**
 - Variable by route

- **Studied Populations:**
 - Schizophrenia, PTSD, Borderline

- **Efficacy / Literature:**
 - Data from RCTs
 - C > O > Q >> risperidone = haloperidol
Trials on ***-3 FAs:

et al, Year: Trial Intervention
- Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
- Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
- Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

et al, Year: Drug A vs Drug B
- RCT, n= 67, ages 6-14 years
- Dx: ADHD + ODD, ADHD + CD
- Conduct scale response 21/37 vs 6/29, p <.01

et al, Year: Clonidine
- RCT, n= 8, average age 10.0
- Dx: Autism (PDD)
- Effect Size: 1.1 (large >0.8)

Antipsychotics

- Specific Drugs Studied:
 - Olanzapine
- Mechanism:
 - 5HT-2A, 5HT-2C antagonism
- Onset:
 - Variable by route
- Studied Populations:
 - Schizophrenia, PTSD, Borderline
- Efficacy / Literature:
 - Data from RCTs
 - C > O > Q >> risperidone = haloperidol

Trials on ***-3 FAs:

et al, Year: Trial Intervention
- Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
- Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
- Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

et al, Year: Drug A vs Drug B
- RCT, n= 67, ages 6-14 years
- Dx: ADHD + ODD, ADHD + CD
- Conduct scale response 21/37 vs 6/29, p <.01

et al, Year: Clonidine
- RCT, n= 8, average age 10.0
- Dx: Autism (PDD)
- Effect Size: 1.1 (large >0.8)
Antipsychotics

- **Specific Drugs Studied:**
 - Quetiapine
- **Mechanism:**
 - 5HT_{2A}, 5HT_{2C} antagonism
- **Onset:**
 - Variable by route
- **Studied Populations:**
 - Schizophrenia, PTSD, Borderline
- **Efficacy / Literature:**
 - Data from RCTs
 - C > O > Q >> risperidone = haloperidol

Trials on *-3 FAs :**

- et al, Year: Trial Intervention
 - Meta-analysis of 11 RCTs, n = 150, age 10.6±2.4 years
 - Dx: ADHD(42), tic(67), CD(26), PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n = 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n = 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

Stimulants

- **Specific Drugs Studied:**
 - Methylphenidate (Ritalin®, Metadate CD®, Concerta®)
 - Pemoline (Cylert®)
 - d,l-amphetamine (Adderall®)
- **Mechanism:**
 - DA/NE reuptake in neurons of cerebral cortex, subcortical structures
- **AEs:**
 - Insomnia, Appetite, GI pain, HA, dizziness, height/weight suppression
- **Onset:**
 - Minutes - hours
- **Studied Population:**
 - Primary Dx: ADHD (13), AUT (2), MR (1), DB
- **Efficacy / Literature:**
 - Stimulants Overall (ES = 0.78)
 - Methylphenidate (MPH), ES = 0.9, demonstrated efficacy, multiple trials
Trials on ***-3 FAs:

- et al, Year: Trial Intervention
 - Meta-analysis of 11 RCTs, n=150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n=67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n=8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

5-HT$_{1A}$ Receptor Agonists

- Specific Drugs Studied:
 - Buspirone
- Mechanism:
 - Increased serotonergic activity;
- Onset:
- Studied Population:
- Efficacy / Literature:
 - Limited to case reports, open trials
 - Demonstrated reduction in aggressive outbursts

Trials on ***-3 FAs:

- et al, Year: Trial Intervention
 - Meta-analysis of 11 RCTs, n=150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n=67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n=8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)
β-Blockers

- **Clinical Effects:**
 - xxx
- **Mechanism:**
 - Non-selective blockade of β-adrenergic receptors normally responsible for ‘fight or flight’ stimulation
- **Adverse Effects:**
 - Drowsiness, dizziness, headache, hypotension, xerostomia
- **Dose Adjustments:**
 - Lower initial doses if renal or hepatic impairment

Trials on β-Blockers: Propranolol (Inderal®)

- **et al, Year: Trial Intervention**
 - Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- **et al, Year: Drug A vs Drug B**
 - RCT, n= 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- **et al, Year: Clonidine**
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

Omega-3 FAs

- **Mechanism:**
- **Onset:**
 - weeks to months
- **Studied Population:**
 - Pts with hx of substance abuse
- **Efficacy / Literature:**
 - DB RCTs – reduced anger, outbursts
Trials on Omega-3 FAs:
- **et al, Year: Trial Intervention**
 - Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- **et al, Year: Drug A vs Drug B**
 - RCT, n= 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- **et al, Year: Clonidine**
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)

α2-Receptor Agonists

- Clinical Effects:
 - Reduced oppositional behavior
 - Enhanced frustration tolerance
 - Improved hyperactivity, impulsivity
 - Reduction in AEs from concomitant stimulant therapy

- Mechanism:
 - Agonism at postsynaptic α2-receptors in the prefrontal cortex
 - modulation of sympathetic outflow
 - enhanced executive function

- Adverse Effects:
 - Drowsiness, dizziness, headache, hypotension, xerostomia

- Dose Adjustments:
 - Lower initial doses if renal or hepatic impairment

Trials on α2-agonists: Clonidine (Catapres®)

- **Connor et al, 1999: Clonidine monotherapy**
 - Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
 - Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
 - Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- **Hazel et al, 2003: Stimulant vs +Clonidine**
 - RCT, n= 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- **Jaselskis et al, 1992: Clonidine**
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)
Trials on α₂-agonists: Guanfacine (Tenex®, Intuniv®)

Scahill et al, 2001: Guanfacine monotherapy
- RCT, n= 34, average age 10.0 years, 8-week duration
- Dx: ADHD + tic
- Measured reduction in aggressive behavior
- Effect Size: 0.4 (moderate 0.21 to 0.5)

Anti-androgens

- Specific Drugs Studied:
- Mechanism:
- Onset:
- Studied Population:
- Efficacy / Literature:

Trials on Androgen-Antagonists:

- Meta-analysis of 11 RCTs, n= 150, age 10.6±2.4 years
- Dx: ADHD(42), +tic(67), +CD(26), +PDD(15)
- Effect Size: 0.58±0.16 (moderate 0.21 to 0.5)

- et al, Year: Drug A vs Drug B
 - RCT, n= 67, ages 6-14 years
 - Dx: ADHD + ODD, ADHD + CD
 - Conduct scale response 21/37 vs 6/29, p <.01

- et al, Year: Clonidine
 - RCT, n= 8, average age 10.0
 - Dx: Autism (PDD)
 - Effect Size: 1.1 (large >0.8)
Conclusion

- There is no "magic pill" for the treatment of aggressive behaviors.
- The most effective pharmacotherapeutic management of aggression can vary based on patient specific factors, and the sub-type of aggression.
- Effective treatment of co-morbid psychiatric conditions should be prioritized.

Patient Case

Post-Assessment

- T/F: Patients should always be trialed on an SSRI before resorting to other therapeutic options for aggressive behavior.
- T/F: Aggressive-impulsive behavior is believed to be caused by an imbalance between the prefrontal cortex (control center) and the limbic system (drives).
- T/F: Testosterone antagonists are the most effective treatment option for aggressive-impulsive behavior refractory to other treatment modalities.
References